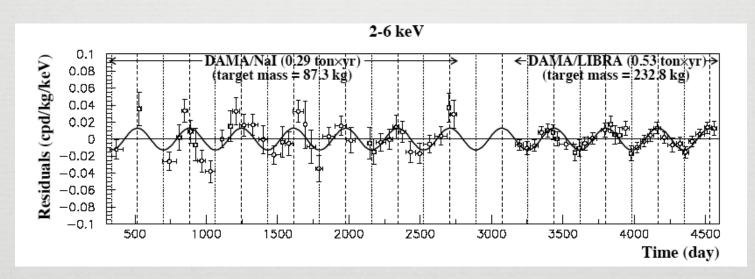
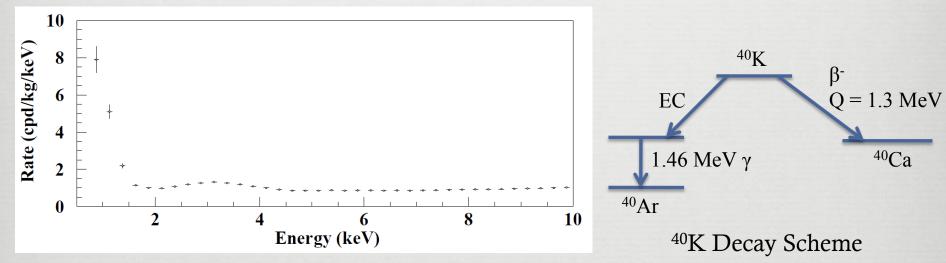
SABRE: A NaI dark matter experiment with active background rejection



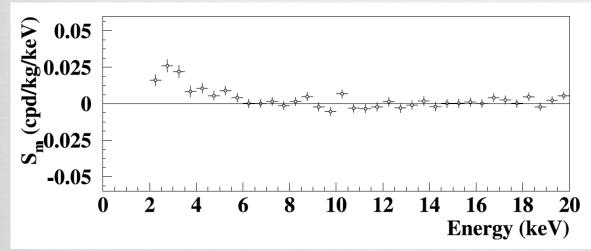
Emily Shields
Frank Calaprice & Jingke Xu
Princeton University

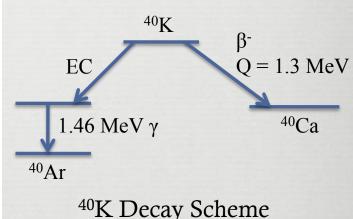
Introduction


- WIMP Dark Matter and the annual modulation
- Other experiments (CDMS, CoGeNT, XENON)
- The DAMA/LIBRA result
- Need for verification of the DAMA/LIBRA result

The Potential ⁴⁰K Background

- ™ Trace amounts of K in NaI crystal (~13 ppb in DAMA*)
- 10.7% of ⁴⁰K undergoes e-capture decay to ⁴⁰Ar, which may produce a ~3 keV x-ray/Auger electron



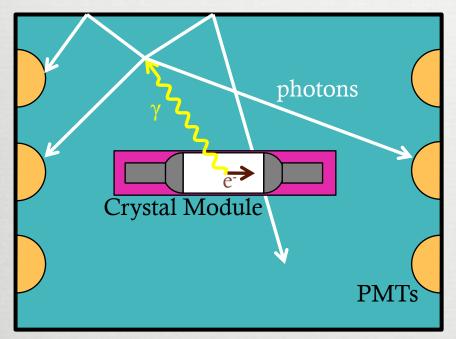
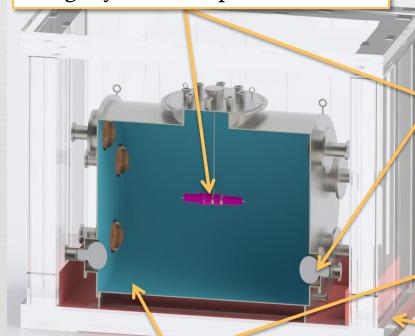

DAMA/LIBRA energy spectrum

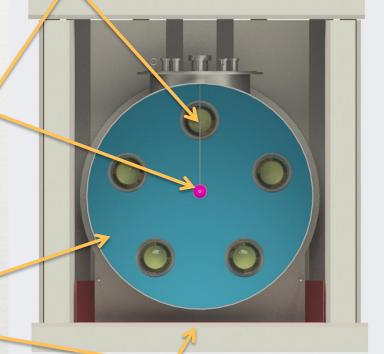
The Potential ⁴⁰K Background

- Trace amounts of K in NaI crystal (~13 ppb in DAMA*)
- 10.7% of ⁴⁰K undergoes e-capture decay to ⁴⁰Ar, which may produce a ~3 keV x-ray/Auger electron

DAMA/LIBRA modulation amplitude as a function of energy

The Veto Concept


Illustration of veto principle (not to scale)

- Active background rejection
 - Backgrounds from crystal and surrounding components, especially ⁴⁰K decay in NaI
- R The veto detector
 - 1.5 m x 1.5 m cylinder
 - CR Liquid scintillator: linear alkyl-benzene (LAB)

SABRE (Sodium-iodide with Active Background REjection)

NaI Crystal Module containing 1-10 kg crystal and 2 phototubes 8" High QE PMTs

Liquid Scintillator Detector with 2 tons LAB, lined with reflector for simulated light yield of 200 p.e./MeV

Lead and Steel Shielding, ~ 10 attenuation lengths for 1 MeV γ , inner dimensions 5'x6'x7'

Experimental Plan

- Measurement of ⁴⁰K content in NaI

 - Use the liquid scintillator detector as coincidence counter to measure K concentration in crystal
- Dark Matter Measurement
 - CR Liquid scintillator detector operates as veto for all background sources
 - Underground operation: potential sites include Gran Sasso and SNOLab

The NaI Powder


Powder	DAMA	MV Laboratories (Seastar)	Sigma Aldrich "Astro- Grade"
K	<100 ppb	12 ppb	3.5 ppb
Rb	0.5 ppb in crystal, powder unreported	14 ppb	0.2 ppb
Th	20 ppt	<200 ppt	<1700 ppt
U	20 ppt	<100 ppt	<500 ppt

- Have purchased 8 kg of powder from the two sources above
- Both have K concentrations lower than the final crystal concentration in DAMA of 13-20 ppb

Crystal Growth

- Working with RMD Inc. to grow the crystals
- Expect reduction of K in crystal growth process (4-5x)
- Have grown test crystals with vertical Bridgman method
- Future crystals to be grown in Pt Kyropoulos crucible
- Employ other purification methods to further reduce impurities

NaI ingot (top) and crystal (bottom) grown at RMD

Experiment Background

- Respected backgrounds
 - Crystal K, U, and Th
 - PMTs (in crystal detector and in liquid scintillator detector)

 - Steel vessel for liquid scintillator and shielding
 - External background (room and cosmogenic)
- Two GEANT4 simulations of background for ⁴⁰K measurement and dark matter measurement

Background Estimate (40K Measurement)

Background source	Expected activity	Expected background rate
Crystal (U&Th)	O(10) ppt	0.01 cpd/kg
Crystal PMTs	O(10) mBq/tube K,Th,U,Co (measured)	0.19 cpd/kg
Veto PMTs	O(10) mBq/tube K,Th,U,Co (measured)	0.06 cpd/kg
Steel and shielding	O(1-10) mBq/kg	0.2 cpd/kg
External (with 10 ⁴ rejection from passive shielding)	O(1E-2) $\gamma/m^2/s$ (measured)	0.21 cpd/kg
Total		0.67 cpd/kg

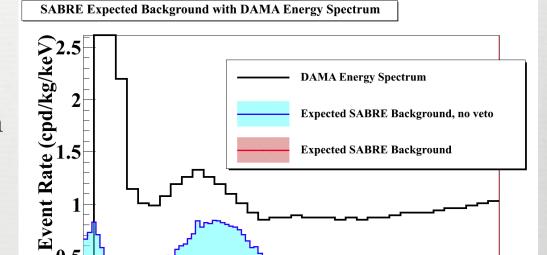
Table of Backgrounds for ⁴⁰K Measurement (expected signal: 1 cpd/kg/10 ppb K)

Background Estimate (Dark Matter Measurement)

Background source	Expected/Measured activity	Expected background with veto	Veto rejection
Crystal K	10 ppb	0.05 cpd/keV/kg	91%
Crystal U & Th	10 ppt each	0.2 cpd/keV/kg	4%
Crystal PMTs	O(10 mBq/tube) K, Th, U, Co	1E-3 cpd/keV/kg/tube	83-98%
Veto PMTs	O(100 mBq/tube) K, Th, U	<5E-6 cpd/keV/kg/tube	>93%
Vessel	O(1-10 mBq/kg) K, Th, U, Co	<0.01 cpd/kg/keV	>93%
Shielding	O(1-10 mBq/kg) K, Th, U, Co	<0.06 cpd/kg/keV	>93%
External (SNOLab)	$10,000 \text{ y/m}^2/\text{s}$	<7E-3 cpd/kg/keV	78%
Total (1 crystal)		0.39 cpd/keV/kg	84%

Table of backgrounds: dark matter measurement (DAMA: 1 cpd/keV/kg)

Background Estimate (Dark Matter Measurement)



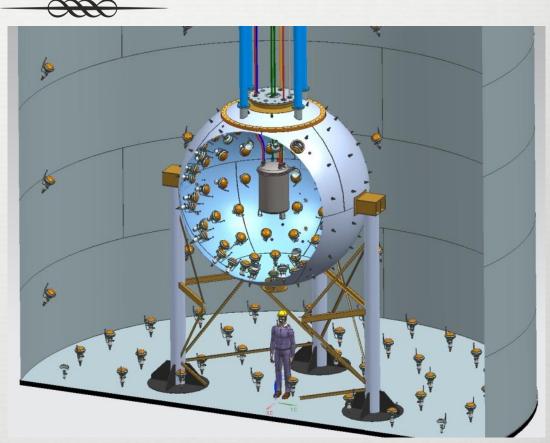
Background source	Expected activity	Expected background with veto	Veto rejection
Crystal K	10 ppb	0.05 cpd/keV/kg	91%
Crystal U & Th	10 ppt each	0.2 cpd/keV/kg	4%
Crystal PMTs	O(10 mBa/tube) K, Th, U, C	1E-3 cpd/keV/kg/tube	
1000 -	ound is ultimately	<5E-6 cpd/keV/kg/tube	>93%
V (.33(.)	by crystal impurities.		>93%
Potassium background reduced 10x by veto.		<0.06 cpd/kg/keV	>93%
External (SNOLab)	10,000 y/111 /S	<7E-3 cpd/kg/keV	78%
Total (1 crystal)		0.39 cpd/keV/kg	84%

Table of backgrounds: dark matter measurement (DAMA: 1 cpd/keV/kg)

Physics Implications

- SABRE is expected to reach a high sensitivity to modulation by rejecting a large portion of backgrounds.
- Even a few 10 kg
 crystals can reach a
 sensitivity to the
 DAMA/LIBRA
 observed mass/crosssection region in one
 year.

Comparison of DAMA spectrum with expected SABRE backgrounds for a 2 kg crystal


5

10

Energy (keV)

Future Plans

- Crystals can be placed inside the DarkSide-50 veto chamber
- We aim to house our veto chamber in Gran Sasso or SNOLab
- After the ⁴⁰K measurement phase, we aim to produce crystals for a 100-kg detector

DarkSide-50: Trunks entering veto chamber sized to fit our crystals

Conclusions

- SABRE will provide a direct test of the DAMA/LIBRA measurement
- SABRE is designed to improve upon DAMA/LIBRA with active rejection of backgrounds and possibly more radiopure crystals

- Production of detector and crystals is underway
- We believe that with our current components we can achieve a background rate lower than DAMA